如何根据不同生物的基因组结构和表达差异基因筛选标准筛选临床性能较好的分子标志物

基础知识复习---基因的结构(基因,序列,染色体,基因组) - DNA技术 - 生物秀
标题: 基础知识复习---基因的结构(基因,序列,染色体,基因组)
摘要: [基础知识复习---基因的结构(基因,序列,染色体,基因组)] 相关疾病:肿瘤感染第一节 基因和基因组一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5
-端非翻译区(UTR)
④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。二、基因组(genome) 一 关键词:[基因 序列 染色体 基因组 基因家族 核小体 基因簇]……
第一节 基因和基因组一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5"-端和3"-端非翻译区(UTR)
④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。二、基因组(genome) 一特定体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。每种真核的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-Value Paradox)。人类基因组计划(genome project)(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)(structural genomics)和功能基因组学(functional genomics)(functional genomics)。蛋白质组(proteome)和蛋白质组学(Proteomics)(proteomics)第二节 真核生物基因组一、真核生物基因组的特点: , ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类 ?(一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因; ②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因; ③有些成员不产生有功能的基因产物,这种基因称为假基因 (Pseudogene).Ψa1表示与a1相似的假基因.假基因分类。加工过的假基因(processed pseudogene)。典型的基因家族1.tRNA基因
单倍体人基因组中1300个tRNA基因,tRNA基因簇.2.rRNA基因 >l00copy.rRNA基因簇(重复单元28S、18S、5.8s-rRNA)3.组蛋白基因 30-40copy.定位:7q32-q36 组蛋白基因簇(重复单位:H1,H2A,H2B,H3、H4) 特点:无intron,Poly(A)- RNA. 4.珠蛋白基因 α类:16p13,基因簇(24Kb):5’—ζ—Ψζ—Ψα1—α2—α1—3’ β类:11p15,基因簇(60Kb):5’— ζ—Gr—Ar—Ψβ—δ—β—3’四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同.五、人类基因组中的重复序列标记1、A1u序列单倍体人基因组50万-100万拷贝,平均每隔3-6Kb就有一个Alu序列, 人A1u序列长300bp: 2X130bp重复序列;
+31bp间隔序列(中间); 两侧7-21bp正向重复(direct repeats),返座子? Alu序列广泛散布于人基因组,约90%巳克隆的人基因合有Alu序列 Alu序列标志。2、可变数串联重复 ? , ? Variable number tamdem repeat, VNTR. 又称小卫星DNA(minisatellite DNA) 由短重复单位(6-40bp)串联重复(6-100次以上)而成,多位于基因的非编码区,广泛分布。 VNTR多态性—分子标记—DNA指纹图(fingerprint).小卫星DNA突变与肿瘤,H-Ras。3、短串联重复(short tandem repeat,STR)又称微卫星DNA(microstallite DNA) 2-6个核苷酸组成的重复单位串联重复(10-60次),两侧为特异的单拷贝序列,人基因组中每l0kb DNA序列至少一个STR序列。 {CA)n,50,000-100,000拷贝. 新一代遗传标记,人类基因组研究,肿瘤,遗传病.第三节线粒体基因组人线粒体基因组的特点:1、人线粒体基因组为16,569bp的双链闭环分子,一条链为重链(H链),一条链为轻链(L链),两条链均有编码功能,每个mtDNA分于编码13种蛋白质和24种结构RNA(22rRNA,2tRNA). 2、线粒体DNA为母系遗传. 3、结构基因不含内含子,部分区域有基因重叠,因此病理性mtDNA突变更易发生. 4、mtDNA突变频率更高.5、线粒体DNA突变的表型表达与核DNA不同。第四节 细菌和病毒基因组一、细菌基因组的特点。 1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构, 2.结构基因中没有内含子,也无重叠现象。 3.细菌DNA大部分为编码序列。二、病毒基因组的特点 1.每种病毒只有一种核酸,或者DNA,或者RNA; 2.病毒核酸大小差别很大,3X103一3X106bp;3.除逆病毒外,所有病毒基因都是单拷贝的。 4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成.
5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子.6.有重叠基因.第五节 染色质和染色体细胞分裂(cell division)间期—染色质(chromatin) 分裂期—染色体(chromosome)一、染色质的基本单位—核小体(一)核小体(nucleosome)结构 DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146bp),形成核小体核心颗粒。 两个核小体核心颗粒之间有Linker DNA(0-80bp), 核小体核心颗粒+Linker=核小体(长180-210bp) 核小 体DNA Ladder.(二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. 组蛋白分类: 1.核小体核心组蛋白,H2A,H2B,H3,H4。分子量较小(102-135aa) 作用:盘绕DNA形成核小体 。 2.H1组蛋白:较大(220aa),作用:与Linker DNA结合后利于核小体稳定和更高级结构的形成? 。二、染色质的高级结构 1、30nm染色质纤丝 , 2、袢环结构(looped domain) 。 3、细胞分裂(cell division)期染色体 分裂期染色体=一对姐妹染色单体(Chromatid) 有丝分裂中期46条染色体按大小和形状排列的的光学显微镜图像称为人的染色体核型(Karyotype)三、染色体的结构要素 。 (一).着丝粒(centromere):细胞分裂(cell division)时染色体与仿锤丝相连结的部位,为染色体的正常分离所必需。 (二).端粒(telomere):真核生物线状染色体分子末端的DNA区域端粒DNA的特点:1、由富含G的简单串联重复序列组成(长达数kb).人的端粒DNA重复序列:TTAGGC。2、端粒的末端都有一条12-16碱基的单链3’端突出。端粒的作用:防止DNA末端降解,保证染色体的稳定性和功能 (三)、复制原点
第二章 DNA的复制、修复和重组 第一节 DNA的复制(DNA Replication)一、DNA复制的基本特性1.半保留性(Semi-Conservative)Meselson-Stahl实验2.双向复制(一般)复制起始点(origin)+两侧复制叉=复制单位(复制子, Replicon) 3.半不连续性(Semi-discontinuous) 前导链(leading strand)-连续合成 随从链(Lagging Strand)-不连续,由岗崎片段(okazaki fragment)连接而成.二、DNA复制必需的成份(真核生物) 1.染色体DNA复制必需三种核苷酸序列①复制起点②着丝粒③端粒.2.RNA引物(RNA Primer)一般8-14nt.带游离3"-OH末端. 3.参加DNA复制的主要酶和蛋白质 ① DNA聚合酶(DNA Polymerase) 真核DNA复制的主要酶DNA Pol a/δ. 功能:从5"-3"方向延伸与模板互补的子代链. ②引发酶(Primase) 与其他多种蛋白组成多蛋白复合体-引发体(Primosome).催化RNA引物合成和复制起始.③DNA连接酶(DNA Ligase)催化一个双链DNA的5"磷酸与另一双链DNA的3"-OH形成磷酸二酯键. ④DNA解链酶(DNA Helicase),打开DNA双链. ⑤增殖细胞核抗原(Proliferating cell nuclear antigen.PCNA) 辅助催化前导链合成. ⑥端粒酶(Telomerase) 末端复制问题。 端粒酶负责染色体末端(端粒)复制,是由RNA和蛋白质组成的核糖核蛋白.其中的RNA成分是端粒复制的模板.(因此端粒是逆转录酶)作用:维持端粒长度.端粒酶活性可用基于PCR的“TRAP”(Telomerase repeat amplification protocol)法测定(Kim,N et al.,science,266,94)端粒与细胞寿命。端粒、端粒酶与肿瘤的关系:绝大多数恶性肿瘤(malignant tumor)具有端粒酶活性但端粒缩短,但也有约5%的肿瘤无端粒酶活性且端粒较长。 端粒酶作为新的肿瘤标志和肿瘤治疗靶点.第二节 DNA修复(DNA repair) DNA修复是维持基因组完整性的重要机制,在保护基因组避免发生可能导致肿瘤或遗传疾病的突变中起关键的作用。引起DNA损伤的因素:1、细胞内源性损伤因素:DNA复制错误;自发损伤包括碱基互变异构、碱基脱氨(C→U、A→I)和碱基丢失等;氧化代谢副产物如活性氧物质(Reactive oxygen species,ROS)的攻击等。2、环境中的损伤因素:辐射(含紫外线、X射线)产生胸腺嘧啶二聚体;化学致癌物(氧化脱氨,烷化剂或代谢活化物如苯并芘、黄曲霉素等产生碱基加合物)一、碱基切除修复(Base excision repair、BER)该途径中最关键的是必须通过一种糖苷酶(glycosylase)先除去变异碱基(如被氧化、烷基化或脱氨的碱基),该糖苷酶催化连接损伤碱基与脱氧核糖之间的糖苷键水解,释放游离碱基并在DNA中产生一个去碱基位点,然后由去嘌呤/去嘧啶(AP)核酸内切酶、DNA聚合酶和DNA连接酶等利用相对的一条正常链为模板进行修补合成。 BER途径中的重要糖苷酶: (1)尿嘧啶DNA糖苷酶(UDG),从DNA中除去尿嘧啶碱基; (2)3—甲基腺嘌吟(3MeA)DNA糖苷酶,可修复烷化剂产生的损伤; (3)负责修复DNA氧化损伤的糖苷酶(如Fpg/MutM DNA糖苷酶) BER是修复内源性DNA损伤(自发水解、烷基化和活性氧攻击)的主要途径,因此对于降低自发突变的频率、防止肿瘤发生有重要作用。二、核苷酸切除修复(Nucleotide excision repair,NER)首先由多聚体复合物识别损伤,再在损伤的两侧进行切除。随着DNA链被解开,包含损伤的单链片段释放出来,留下的缺口由DNA聚合酶填补,DNA连接酶封闭。该途径包括20种以上蛋白,可以修复紫外辐射诱导的环丁烷嘧啶二聚体(CPD)和(6—4)光产物((6—4)PPs),以及一些化学物质产生的大加合物。人的NER系统有关基因及其蛋白质产物功能。NER系统缺陷与着色性干皮病(Xeroderm pigmentosum,XP) NER可再分为二条子途径: (1)全基因组修复(Global Genomic repair,GGR)途径:修复整个基因组内的损伤,其效率取决于损伤的化学特性、损伤部位的DNA序列和染色质结构。(2)转录藕联修复(Trancsription—coupled repair,TCR,):特异地修复基因组中具有转录活性(即表达)的基因的被转录DNA链上的损伤,该途径的 特点是依赖RNA聚合酶II催化的转录,其中的一些蛋白是普通转录因子TFIIH 的亚基。三、错配修复(Mismatch repair)负责修复DNA复制过程中由于错误掺入而产生的错配。STR序列复制-模板链的滑动产生小的环状突出(loop)- 重复序列扩张(expansion)或丢失:微卫星不稳定性(microsatellite instability) E coli中的MMR途径需要mutS,mutH,mutL和uvrD基因产物和特异性核酸外切酶、DNA聚合酶和DNA连接酶等。在酵母和人类已鉴定了mutS,mutH的多种同源物。遗传性非息肉性结肠癌(HNPCC)基因缺陷。微卫性不稳定与肿瘤。新的肿瘤基因诊断标志。四、重组修复(Recomhinant repair)修复DNA的两条链均受损伤的部位的双链断裂或链间交连。
Further readings: 1 Wood RD,DNA repair in eukaryotes,Ann Rev Biochem,5—167 2 Krokan HE,et a1., DNA glycosylase in the base excision repair of DNA.Biochem J,:1—16 3 Vrieling H,et a1., Transcription coupled repair and its impact on mutagenesis,Mutation Res,:135—142
第三节 重组(recombination) 重组的本质是基因的重排或交换.即2个DNA分子间或一个DNA分子的不同部位间,通过断裂和重接,交换DNA片段从而改变基因的组合和序列.一.同源重组(Homologous recombination) 指DNA同源序列间的重组,常发生于两个较长的同源DNA片段或同源染色体之间。 可通过同源重组将外源基因定位整合到细胞基因组中.二.转座(transposition) 可移动的DNA元件(mobile DNA elements) -转座元件(Transposable element).它是指那些可在DNA分子内 或DNA分子间转移的DNA片段. 转座元件的转移过程-转座 转座的特点: 1.转座后原来位置的转座元件序列仍然保留,但同时又把新合成的DNA 复本插入到另外一个位点. 2.转座过程需要转座酶(transposase).它催化断裂和重接两步连续的 过程(需要M2+) 3.转座元件插入位置的两茶有3-12bp的正向重复序列(靶序列),它是由于转座酶错位切割DNA造成的.这种短正向重复序列是存在转座元件的特征. 转座元件的分类 ①转座子(transposon):通过DNA复制而转移的转座元件. ②逆转座子(retroposon)或返座子,通过RNA阶段实现转移的转座元件 (DNA→ RNA→ DNA→ 插入新位点) 逆转座子例:Alu.LINE1.逆假基因(retro-pseudogene) 转座的遗传效应-导致基因重排、插入、缺失。回复第三章 基因表达的调控基因表达:DNA→mRNA→蛋白质的遗传信息传递过程基因表达的调控第一节基因的活化 基因的“开关”-染色质的活化一、活性染色质的结构 间期核染色质: 异染色质(heterochromatin),高度压缩(不转录); 常染色质(euchromatin),较为松散,
常染色质中约10%为活性染色质(更开放疏松)。 活性染色质→←非活性染色质二、活性染色质的结构特点(一)DNaseI敏感性
转录活性(或有潜在转录活性)的染色质对DNase I更敏感. DNase I超敏感位点(DNase I HyperSensitive Sites,DHSS)(二)组蛋白H3的CyS110上巯基暴露,三、活性染色质结构的形成(一)、核小体位相(Phased positioning) 1.核小体的旋转定位(rotational positioning) 指核小体核心与DNA双螺旋在空间结构中的相互关系,主要包括DNA双螺旋的大沟是面向还是背向核心结构. ‘ 2.核小体的平移定位(translational positioning) 指核小体与特定DNA序列的结合位置和方式,特别是转录活性相关的DNA调控元件(启动子、增强子等)序列与核小体的相互位置关系。(二)、组蛋白修饰 1.H1组蛋白磷酸化 促进染色体包装,影响转录活性, 2.核心组蛋白修饰 乙酰化:常发生在组蛋白的Lys, 一般活性染色质是高度乙酰化的。(三)HMG蛋白结合
HMG(high mobility group)蛋白—高迁移率蛋白, 如HMG14/HMG17. 与核小体核心颗粒结合,有利转录。四、DNA甲基化与基因表达 .(一)、真核生物基因组DNA的甲基化(Methylation) 哺乳动物(mammalian)基因组中5%的C为甲基化(m C),mC主要存在于CpG二核苷酸中.
CpG二核苷酸序列常成簇聚集并零散地分布于人基因组中,形成CpG岛(CpG islands).人基因组中约每10Kb就有一个CpG岛. CpG岛常与基因相连(可作为寻找基因的标记)。(二)DNA甲基化的转录抑制作用。 基因表达与甲基化呈负相关 基因甲基化状态:1、高度甲基化: 基因为持续失活(如女性的一条X染色体;2、诱导去甲基化:如组织或发育阶段特异性表达基因;3、持续低水平甲基化:具有转录活性(如持家基因)。 持家基因(housekeeping gene): 是指对所有类型组织细胞在任何时候都需要其表达的基因,通常都是维持细胞基本生存所必须的基因,其表达常保持在固定的水平。又称为组成性基因(Constitutive gene)。(三)甲基化与基因组印迹基因组印迹(genomic imprinting):指基因表达活性只局限于来自双亲之一的基因版本。 被印迹(imprinted)的基因. 基因组印迹的机制--DNA高度甲基化 基因组印记与肿瘤.第二节 转录水平的调控 转录水平的调控是基因表达调控中最重要的环节。一、真核基因转录基本条件:特异性基因转录的基本条件包括:①启动子(特别是核心启动子)②转录模板(转录起始点(+1)---终止点)③RNA PolⅡ④普通转录因子(GTFs)(一)启动子(promoter) 与基因转录启动有关的一组DNA序列,一般位于RNA poII转录起始点上游100-200bp以内,其功能是决定转录的起始点和调控转录频率. 启动子区域包括核心启动子和启动子上游近侧序列:1、核心启动子(core promoter)是决定转录起始位置的关键序列,也是普通转录因子TFⅡD的结合位点,①TATA盒(TATA box) 位于转录起始点上游-25~-30bp.②起始子(initiator,Inr) Inr是与转录起始位点重叠的短的较保守序列.注:①不是所有基因都含有TATA盒或Inr序列.有的只有其中之一,有的两者都无. ②这些核心启动子的序列和它们之间的间隔多变2、上游启动子元件(Upstream Promoter element,UPE) 位于较上游(-30一-110bp),能较强影响转录起始的频率,如CAAT 盒和GC盒.其中GC盒是转录因子SPl的结合位点。(二)RNA聚合酶Ⅱ 负责真核生物蛋白编码基因的转录(产物mRNA),有7-10个亚基,最大亚基的羧基末端结构域(CTD)具有7个氨基酸(Tyr-Ser-Pro-Thr-Ser -Pro-Set)的重复序列,其中有多个磷酸化位点.CTD磷酸化对调控基因转录有重要作用.(三)基础转录因子(basal transcription factor) 真核基因转录除RNA聚合酶外还需要许多蛋白因子—转录因子参加,其中一些转录因子是RNA聚合酶Ⅱ转录起始必需的,并且可以维持基础水平的转录,因此称为基础转录因子或普通转录因子(general transcription factor)1.RNA聚合酶 II的普通转录因子(TF II)包括TFIID,TFⅡB,TFIIF,TFIIE,TFIIH,TFIIA等.TFIID是由TATA盒结合蛋白(TATA binding protein,TBP)和8种TBP协同因子(TBP associated factor,TAF)组成的复合物,TFIID可识别和结合核心启动子(TATA盒和Inr);TFⅡB的C端与TFIID和DNA的复合物结合,N-端与TFⅡF协同作用募集RNA聚合酶II,再加上TFIIE,TFIIH形成完整的转录复合物. TFIIH有蛋白激酶活性,可使RNA Pol最大亚基CTD磷酸化,使转录起始过渡到转录延伸.
TFIIA有助于TFIID与TATA盒核心启动子结合.2、TAF的作用 TFIID中包括至少8种TBP协同因子,分子量为30—250kD,分别命名为TAFⅡ-30~250.TAFⅡ150识别起始子(1nr)序列.TAF是基因转录调控的辅助因子,它的作用是通过与多种转录调控因子(激活物或阻遏物)的转录调控结构域结合,而介导转录激活或抑制。二、基因转录的顺式调控元件 顺式调控元件(cis-regulating element)是指对基因表达有调控活性的DNA序列,其活性只影响与其自身同处于一个DNA分子上的基因. 顺式调控元件中的短核心序列:共有序列或一致序列(consensus sequence)。 (一)启动子(promoter) (二)增强子(enhancer) 能显著提高基因转录效率的一类顺式调控元件(其核心序列常为8-12bp). 增强子的作用特点:
1.能(通过启动子)提高同一条链上的靶基因转录速率; 2.增强子对同源基因或异源基因同样有效; 3.增强子的位置可在基因5’-上游、基因内或3’下游序列中; 4.自身没有5’-或3’-方向性; 5.增强子可远离转录起始点(最多30Kb); 6.增强子一般具有组织或细胞特异性.(三)负调控元件—沉寂子
负调控元件是能抑制基因表达的序列.如沉寂子(silencer)(四)其它顺式调控元件 1.应答元件(responsive elements) 真核细胞中对某些特定的环境作出应答的基因,常具有相同的顺式元件—应答元件. 应答元件能被在一些特定情况下表达的调控因子识别(又称为可诱导的顺式调控元件/反式作用因子)。 2.转座元件对基因表达的调控, 。三、基因转录的反式作用因子 转录水平的调控主要是通过与多种DNA元件结合的蛋白因子来实现. 反式作用因子(trans-acting factor)是通过识别和结合顺式调控元件的核心序列而调控靶基因转录效率的一组蛋白质. 反式作用因子对基因表达的调控可正(激话)可负(阻遏). (一)反式作用因子的结构:
结构域(domain)是指蛋白质中可以具有独立的超二级结构的部分。通常由一个基因外显子编码,并可具有特定的功能。在较大的蛋白质中, 多个结构域间可通过较短的多肽柔性区互相联接. 基序(motif):一般指构成任何一种特征序列的基本结构.作为结构域中的亚单元,其功能是体现结构域的多种生物学作用.1.反式作用因子的DNA结合结构域(DNA binding domain)中的几种常见基序: ①螺旋/转角/螺旋(Helix-turn-helix,HTH)基序两段螺旋被一短的转角结构分开,其中一段螺旋为DNA识别螺旋. 同源异形结构域(Homeodomain,由同源异形盒编码)中含有HTH基序。具有Homeodomain的转录调控蛋白在胚胎发育和正常细胞分化的基因表达调节中有重要作用。②锌指(Zinc finger)基序 由肽链的保守序列中的一对组氨酸加一对半胱氨酸(His2/Cys2)或2对半胱氨酸(cys2/cys2)与一个锌离子形成配位键,这些氨基酸对之间的多肤链成环状突出并折迭成指形结构,多个指结构常串联重复。 锌指族转录因子以二聚体形式同DNA上的顺式调控元件结合。 含锌指基序的转录因子:与GC盒结合的SPl、类固醇激素受体家族,抑癌蛋白WT1等。③亮氨酸拉链(Leucine-Zipper)基序 由一段每隔6个a a 就有一个Leu的伸展肽链组成,这些周期性出现的Leu都位于α—螺旋的同—侧面,因此两条均含Leu拉链基序的蛋白质通过亮氨酸侧链的相互作用形成二聚体。 具有亮氨酸拉链基序的转录因子:原癌基因C-Jun/C-fos(APl家族)④螺旋-环-螺旋(Helix-loop-Helix,HLHt)基序. 由2个α螺旋间隔一个非螺旋的环(loop)组成.如原癌基因产物C-myc及其结合蛋白Max.含HLH和Leu-拉链基序的转录因子的相似性:①均至少含有一个α螺旋,其中都有一侧亲水面和一侧疏水面,因此这两种基序又称为两亲α—螺旋基序.②两类转录因子均依靠α螺旋氨基端附近的碱性区(带正电荷aa区)与DNA结合,因此又分别称为bzip和bHLH (b=basic,碱性)③两类转录因子活性都依赖于二聚体化2、反式激活结构域(Transactivation domain) ‘ 是反式作用因子的转录调控结构域,一般由DNA结合结构域外的30-100个aa组成. 常见的反式激活域有以下几种:①酸性α谨螺旋结构域(acidic a-Helix domain)如Jun;②富含谷氨酰胺结构域(glutamine—rich domain)如SPl.⑧富含脯氨酸的结构域(proline-rich domain)。(二)反式作用因子家族 同一类序列特异性转录因子一般由基因家族编码,它们的蛋白结构同源,并结合特异的顺式调控元件,这些蛋白组成一个反式作用因子家族。1.POU家族 这一家族中都有一个独特的DNA结合结构域-POIJ结构域.POU结构域包括: N端POU特异结构域(POUs)+C端POU同源异形结构域(POUH). POU结构域是Pit1,octl/oct2和unc86等反式作用因子共有的保守区,因此这类蛋白统称为POU结构域蛋白。2、类固醇激素受体家族包括:糖皮质激素受体(GR),性激素受体(ER/AR),甲状素激素受体 (TR),维甲酸受体(RAR),VitD3受体(VD3R). 这些受体位于胞质或核内,通过激活基因转录起作用.这些受体的DNA结合结构域都含有2个Cys2/Cys2型锌指基序,(分别由2个外显子编码),可识别DNA上的激素应答元件(HRE:Hormone responsive elements)3、NF-κB家族
包括RelA(P65),P60,RelB,C-Rel,P50五种.主要是P50/RelA异二聚体. 胞质中P50/RelA?Iκ B抑制蛋白(失活状态)→释放Iκ B而被激活→易位至核内→激活转录。第三节 转录后加工 在细胞核内对基因产物(mRNA前体)进行各种修饰、剪接和编辑,使编码蛋白质的外显子部分连接成为一个连续的开放读框(open reading frame,ORF)的过程称为转录后加工.一、mRNA前体加工的分子机制(Molecular Mechanisms) - 核内mRNA前体—异质性核RNA(heterogeneous nuclear RNA,hnRNA),hnRNA与蛋白质结合形成核异质性核糖核蛋白(hnRNP), mRNA前体的加工在hnRNP上进行.(一)5’-端加帽(capping)
—mRNA前体的5’-端加甲基化鸟苷(m7pppN) 5’端m7G帽子结构的作用: 1.使mRNA更稳定 2.增加蛋白质合成的效率 3.帽子结构对mRNA前体的剪接是必需的(二)3’-端接多聚腺苷(poly(A)) —在mRNA前体3’端接上一个约200—250个腺嘌呤核苷酸(A)的尾巴。 poly(A)尾巴的作用:1.有利于mRNA通过核孔;2.参与稳定mRNA;3.增强翻译效率。(三)mRNA前体的剪接 剪接(sp!icing)—剪除内含子,并将外显子连接1.真核内含子的序列特征: 真核内含子总是由Gu开始,以AG结束, 内含子的5’-端剪接点(供位)和3’-端剪接点(受位),以及内含子中的一个内部序列分支点(branch site)是mRNA前体正确剪接所必需的。2.mRNA前体的剪接机制 -剪接过程由二步连续的转酯反应组成.该过程中产生一个套索状中间体( lariat intermediate),结果使2个原先被分隔的外显子连接。3.剪接体(spliceosome) 细胞核内的小分子RNA(一般≤300碱基)—SnRNA(small nuclear RNA),包括U1—U6等。 snRNA与特异的蛋白质形成复合物-SnRNP.mRNA前体与snRNP形成的复合物—剪接体.mRNA前体的剪接通过剪接体进行。
U2,U6,U4/U6 SnRNP等是活性剪接体的主要成份.(四)RNA编辑(RNA editing) 是一种与mRNA剪接不同的加工方式,指mRNA在转录后因插入、缺失或核苷酸的替换,改变了DNA模板来源的遗传信息,从而翻译出氨基酸序列不同的多种蛋白质, RNA编辑的例子:apo—B的编辑:C→U替换。二、内含子的选择性剪接 选择性剪接(alternative splicing):在mRNA前体的剪接过程中,参加剪接的外显子可以不按其线性次序剪接,内含子也可以不被切除而保留,即一个外显子或内含子是否出现在成熟mRNA中是可以选择的,这种剪接方式称为选择性剪接。此外,不同的启动子或不同的poly(A)加尾位点的选择,也可看作选择性剪接. 选择性剪接的主要方式。 由来自一个基因的mRNA前体因选择性剪接而产生多种mRNA,并翻译出的不同蛋白质,称为同源异构体(isoform).>5%的人基因可在不同的组织或生理状态下,通过选择性剪接产生不同的蛋白质异构体,这是造成真接生物高度异质性的基础。第四节 翻译水平调控一、翻译起始因子(IF)的调节:可逆磷酸化的作用. 1.eIF-4F的磷酸化激活蛋白质的合成. 2.eIF-2的磷酸化引起翻译起始受阻,降低蛋白质的生物合成水平二、mRNA结构与翻译控制 ,(一)5’-UTR结构1、mRNA5’端m7G帽有增强翻译水平的作用.2、“上游AUG密码子”(位于起始AUG上游的其他AUG密码子)的存在往往抑制下游开放读框的翻译效率.3、起始AUG旁侧序列对翻译效率的影响.Kozak序列:GCCAUGG (二)3’-UTR结构 1.poly(A)尾增加翻译效率 2.富含UA序列抑制翻译。三、mRNA稳定性与翻译控制 mRNA稳定性主要取决于3’—UTR结构1.poly(A)尾增加mRNA稳定性,2.3’-UTR中UA序列导致mRNA不稳定.四、翻译后修饰1、氨基酸侧链的共价修饰:乙酰化、磷酸化、糖基化(N-、O-);2、蛋白质前体的切割和成熟。Proprotein→protein.例:胰岛素(insulin)的成熟。五、蛋白质的分泌和胞内定位信号肽:作为蛋白质定位信号的短肽序列,指导蛋白质运输到正确位置,定位结束后通常被特异的信号肽酶切除。常见几种信号肽的特点:1内质网和细胞分泌信号:N-端约20个左右氨基酸,疏水。2 线粒体定位信号:N-端,一面为正电残基另一面为疏水残基的两亲α螺旋。3 核定位信号:内部,常为碱性氨基酸加脯氨酸链两部分构成。如SV40 T 抗原:pro-lys-lys-lys-Arg-lys(127-132)回复
第四章 原癌基因与抑癌基因第一节 概述 病毒致癌作用,病毒癌基因Viral oncogene,V-onc).。 细咆癌基因(cellular oncogene ,c-onc)或原癌基因(protoncogene)—正常细胞中与v-onc同源的基因, 抑癌基因(tumor suppressor gene):是指由于其存在和表达而抑制细胞癌变的基因。原癌基因与抑癌基因生物学性质差异:1.功能:抑癌基因在细胞生长中起负调节作用,抑制增殖、促进分化成熟与衰老,或引导多余细胞进入程序性细胞死亡(PCD),原癌基因的作用则相反.2.遗传方式:原癌基因是显性的,激活后即参与促进细胞增殖和癌变过程,而抑癌基因为隐性,只有发生纯合失活时才失去抑癌功能.3.突变的细胞类型:抑癌基因突变不仅可发生在体细胞中,也可发生在生殖系(germ 1ine)细胞中,并通过其遗传突变,而原癌基因只在体细胞中产生突变。第二节原癌基因 原癌基因是细胞的正常基因,其表达产物对细胞的生理功能极其重要,只有当原癌基因发生结构改变或过度表达时,才有可能导致细胞癌变。一、原癌基因表达的特点:l、正常细胞中原癌基因的表达水平一般较低,而且是受生长调节的,其表达主要有三个特点:①具有分化阶段特异性;②细胞类型特异性; ③细胞周期特异性。2、肿瘤细胞中原癌基因的表达有2个比较普遍和突出的特点:①一些原癌基因具有高水平的表达成过度表达?②原癌基因的表达程度和次序发生紊乱,不再具有细胞周期特异性。3、细胞分化与原癌基因表达 . 在分化过程中,与分化有关的原癌基因表达增加,而与细胞增殖有关的原癌基因表达受抑制。二,原癌基因的结构改变与其表达激活(一)点突变C--ras:12、13、61位密码子点突变,存在于多种肿瘤.C-ras编码蛋白(21kD,P21):RAS,是一种GTP结合蛋白,具GTP酶活性,是重要的信号转导分子.(二)染色体易位染色体易位(translocation):是染色体的一部分因断裂脱离,并与其它染色体联结的重排过程。 因染色体易位造成的原癌基因激活:1、因易位使原癌基因与另一基因形成融合基因,产生一个具有致癌活性的融合蛋白,如t(9:22)使c-abl与bcr融合,产生一个致癌的P210蛋白2、因易位面使原癌基因表达失控,如t(8:14)易位使c-myc表达失控.(三)基因扩增基因扩增(gene amplification)即基因拷贝数增加.如HL-60和其它白血病细胞,C-myc扩增8-22倍.其它:c-erb B,c-net.(四)LTR插入LTR是逆转录病毒基因组两端的长末端重复(long terminal repeat),其中含有强启动子序列。三、原癌基因产物的功能大多数原癌基因编码的蛋白质都是复杂的细胞信号转导网络中的成份,在信号转导途径中有着重要的作用.原癌基因产物可作为:1、生长因子,如sis(PDGF-β),fgf家族(int-2,csf-1等)2、生长因子受体(质膜):具酪氨酸蛋白激酶活性,如neu,ht,met,erbB,trk,fms,ros-1等。 3、非受体酪氨酸蛋白激酶(质膜/胞质)如src家族:src,syn,fyn,abl,lck,ros,yes,fes,ret等.4、丝氨酸/苏氨酸蛋白激酶(胞质):如raf,raf-1,mos,pim-1,5、G蛋白(质膜内侧),具GTP结合作用和GTP酶活性,如ras家族中的 H-ras,K-ras,N-ras,以及mel和ral等. ,6.核内DNA结合蛋白(转录因子) 如myc家族,fos家族,Jun家族,ets家族,rel,erb A(类固醇激素受体)第三节 抑癌基因一、抑癌基因失活与杂合性丢失 抑癌基因为隐性癌基因,只有发生纯合失活时才对肿瘤形成起作用,通常的表现为抑癌基因的一个等位基因丢失,面另一个存留的等位基因发生突变(点突变、微缺失,重排等),等位基因丢失常伴有抑癌基因相邻区域的杂合性丢失(Loss of heterozygosity,LOH), LOS指肿瘤中特定染色体上某种DNA多态性标志(如RFLP,VNTR、STR或SSCP等)的等位基因片段在同一患者中由正常组织基因组中的两种变为一种,即等位基因型由杂合子变为纯合子。 LOH是肿瘤细胞中部分染色体区域缺失的表现。二、抑癌基因产物的功能巳知的肿瘤抑制基因及其蛋白产物功能基因 相关癌 产物胞内定位作用p53 RbWT-1 APC DCCNF l RETVHL P16(MTS-1)WAF/CIPlBRCAl肺癌、乳腺癌等(>51种)视网膜细胞瘤等wilm’肿瘤结肠癌 结肠癌 神经纤维瘤甲状腺癌 肾癌 黑素瘤等(多种)多种乳腺癌、宫颈癌等
核核 核 胞质? 膜胞质质膜核核核核转录因子转录因子转录因子?粘附分子GTP酶激活剂受体酪氨酸激酶转录延伸因子CDK抑制剂CDK抑制剂转录因子抑癌基因p53人P53基因定位:17P13,11个外显子编码393个氨基酸。p53基因突变:存在于一半以上的人肿瘤中,多为点突变,主要发生于外显子5-8,如肝癌中的249号密码子第3碱基G→T ,与黄曲霉素B1有关。 P53蛋白结构和功能: P53蛋白为核内转录因子,包括①核心区的DNA结合域;②N端转录激活域;③C端介导寡聚体化的结构域。1、P53的中央域识别和结合一个10bp的启动子序列,可激活转录(通过N-端的反式激活域)。P53突变大多发生于中央DNA结合域。2、P53也可结合DNA损伤时产生的单链区域。3、P53是四聚体,寡聚化需要C-端域4、P53激活cki p21, 后者抑制细胞周期于G1期. 5、 p53 激活与负责辐身损伤的修复蛋白GADD45,维持基因组稳定性。 6、P53诱导凋亡的机制尚不清楚。 7、正常情况下p53以低水平存在,半衰期短。DNA损伤稳定P53并增加其转录活性8、Mdm2使p53不稳定,易被降解,并能直接抑制其反式激活活性(Mdm2是癌基因)回复
基因克隆基因克隆(gene cloning)或分子克隆,又称为重组DNA技术,是应用酶学方法,在体外将不同来源的DNA分子通过酶切、连接等操作重新组装成杂合分子,并使之在适当的宿主细胞中进行扩增,形成大量的子代DNA分子的过程。克隆(clone)一指含有单一的DNA重组体的无性繁殖系,或指将DNA重组体引入宿主细胞建立无性繁殖系的过程(cloning)。 一个完整的基因克隆过程包括以下步骤:1、获得待克隆的DNA片段(基因);2、目的基因与载体在体外连接;3、重组DNA分子导入宿主细胞;4、筛选、鉴定阳性重组子;5、重组子的扩增与/或表达。第一节重组DNA中常用的工具酶包括限制性核酸内切酶、DNA连接酶、DNA聚合酶、逆转录酶等,一、限制性内切酶的定义、命名和分类限制性核酸内切酶是识别并切割特异的双链DNA序列的一种内切核酸酶。限制性核酸内切酶的来源:细菌的限制-修饰系统。分子克隆中所用的限制性核酸内切酶属于第Ⅱ类。限制性核酸内切酶的命名。二、限制性核酸内切酶的作用特点1、识别位点的DNA序列呈二重旋转对称(即具有迥文结构);2、切割DNA均产生含5’-磷酸和3’-羟基的末端;3、 错位切割产生具有5’-或3’-突出的粘性末端;而沿对称轴切割双链DNA产生平头末端,也称钝性末端。4、少数不同的限制酶可识别和切割相同的位点,这些酶称为同切酶,如MboI Ⅰ和 Sau3A。三、其它工具酶参考“分子克隆”(Sambrook,J et al . molecular cloning)第二节
载体-宿主系统一、概述载体(vector)是携带外源DNA进入宿主细胞进行扩增和表达的DNA,它们一般是通过改造质粒、噬菌体或病毒等构建的。载体应具备以下条件:1、能在适当的宿主细胞中复制;2、具有多种限制酶的单一切点(即所谓多克隆位点)以便外源DNA插入;3、具有筛选标志以区别阳性与阴性重组分子;4、载体分子较小,以便体外基因操作,同时载体DNA与宿主DNA便于分离;5、对于表达型载体还应具有与宿主细胞相适应的启动子、增强子、加尾信号等基因表达元件。宿主细胞是基因克隆中重组DNA分子的繁殖场所,适当的宿主细胞,必须符以下条件:1、对载体的复制和扩增没有严格的限制;2、不存在特异的内切酶体系降解外源DNA;3、在重组DNA增殖过程中,不会对它进行修饰;4、重组缺陷型,不会产生体内重组;5、容易导入重组DNA分子;6、符合重组DNA操作的安全标准。二、质粒载体质粒(plasmid)是存在于细菌染色体外的小的共价、闭环双链DNA分子,能自主复制,并在细胞分裂(cell division)时遗传给子代细胞。质粒可赋予宿主细胞一些遗传性状如抗药性等,通过质粒赋予细菌的表型可识别质粒的存在,这是筛选重组转化子的基础。作为载体的质粒一般具有以下特点:1、分子相对较小(3∽10kb);2、松驰型复制;3、具有适当的多克隆位点以便外源DNA插入;4、具有插入失活筛选标志,便于从平板上直接筛选阳性重组子;5、质粒能携带的外源DNA片段一般较小(<15kb).三、λ噬菌体载体λ噬菌体是一种双链DNA噬菌体,基因组约为50kb+。线性λ噬菌体DNA分子的两端各有12碱基的互补单链序列,是天然的粘性末端,称为COS位点。λ噬菌体的生活周期:溶菌(裂解)生长时在平皿上形成清亮的噬菌斑;溶源性生长。λ噬菌体的基因组:左臂长约20kb,含噬菌体头、尾蛋白编码基因;中央片段长约12-24kb,对噬菌体为非必需区;右臂长约10kb,含λ噬菌体复制和溶菌相关蛋白的编码基因。所有λ噬菌体载体均为通过切除非必需的中央区,并增减某些限制性酶切位点和插入适当的筛选标记基因改造而成。已构建的λ噬菌体载体分为两类:1、置换型载体:有两个酶切位点或两组排列相反的多克隆位点,其间的DNA片段可被外源DNA置换。这类载体适于克隆5-20kb的外源基因片段,常用于构建基因组DNA文库。2、插入型载体:只有一个限制性内切酶位点或一组多克隆位点可供外源基因插入。这类载体允许插入5-7kb的外源DNA,适于构建cDNA文库。如λgt 噬菌体载体。一般将噬菌体DNA在体外包装成病毒颗粒后再用于感染受体菌,这样能大大提高转染效率。四、M13丝状噬菌体载体M13基因组大小为6407bp,它是一种闭环的单链DNA分子,在感染细菌后呈双链复制型DNA。因此用作克隆载体的双链DNA可从细菌中分离得到。在细菌中,双链DNA复制100-200拷贝后就大量产生单链DNA,后者包装成子代噬菌体颗粒,分泌到细胞外,而不裂解细菌。在M13基因组中含507个核苷酸的非必需区,在这个区域插入外源DNA不会影响M13的繁殖和生存,现在使用的M13载体如M13Mp18等均为对此区域进行改造而获得。M13克隆的最大问题是不能插入较大的外源DNA片段(一般<1000bp),但M13载体的优点是从细菌中释放出来的噬菌体颗粒中含有一条与克隆的模板DNA互补的单链,所以最适合于制备DNA测序时用的单链模板,另外也可用于制备单链特异性DNA探针。五、粘粒载体 粘粒(柯斯质粒)是指含有λ噬菌体粘性末端的杂种质粒,由λDNA的COS区(约20-数百bp)与质粒重组而成,在宿主细胞中可作为正常噬菌体进行复制,但不表达任何噬菌体的功能。粘粒的结构特点:1、含有抗药性标记和质粒复制起始位点;2、一个或多个单一限制酶切位点;3、带有λ噬菌体粘性末端;4、分子小(4-6kb),可容纳大到40-50kb的外源DNA片段,因此适于构建真核生物基因组DNA文库。六、酵母人工染色体载体酵母人工染色体由酵母染色体的着丝粒(cen4)、自主复制序列(ARS1)和来自四膜虫的端粒(Tel)等功能性DNA序列组成。它可携带长达200-1000kb的DNA片段,因此在人基因组DNA大片段的克隆中非常有用,是染色体克隆排序的主要工具。用酵母人工染色体克隆DNA的过程与λ噬菌体相似,将DNA大片段与载体的两臂相联,然后将连接混合物转化进酵母细胞中,利用载体上的选择性标记进行筛选。第三节 目的基因的获取一、通过建立基因文库分离靶基因基因文库包括两类:基因组文库和cDNA文库,两种文库的建库过程不同,产生的基因结构也不同,因此应用范围也不相同。(一)、基因组文库是含有某种生物体(或组织、细胞)全部基因的随机片段的重组DNA克隆群体。用λ噬菌体载体构建基因组文库的基本步骤:1、准备载体DNA(如置换型λ噬菌体载体),用适当的限制酶消化并分离得到载体的左右两臂;2、纯化真核细胞高分子量DNA,并用适当的限制酶部分消化;3、分离适当大小的基因组DNA片段(20-24kb);4、连接载体与外源DNA;5、连接产物体外包装及感染;6、基因组文库的扩增。由于基因组文库包含了染色体的所有随机片段形成的重组DNA克隆,因此,利用适当的筛选方法,就可以从中找出携带所需目的基因片段的重组克隆。(二)、cDNA文库cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA.以细胞的全部mRNA逆转录合成的cDNA组成的重组克隆群体称为cDNA文库。从cDNA文库可以获得较完整的连续编码序列(不含内含子),便于表达成蛋白质。构建cDNA文库的主要步骤:1、mRNA分离;2、cDNA第一链合成;3、cDNA第二链合成;4、载体与cDNA的连接;5、噬菌体的包装及转染;6、cDNA文库的扩增和保存。二、化学合成法制备DNA片段主要用于一些小的DNA 片段的合成。三、聚合酶链反应法扩增基因片段对于已知全部或部分核苷酸序列的基因,可以通过聚合酶链反应(PCR),以基因组DNA或cDNA模板扩增得到目的基因片段。第四节DNA分子的体外连接 DNA片段的体外连接是重组DNA技术的关键。DNA连接是由DNA连接酶催化完成的。一、DNA连接酶DNA连接酶催化两年双链DNA片段相邻的5’-磷酸和3’-羟基间形成磷酸二酯键。在分子克隆中最有用的的DNA连接酶是来自T4噬菌体的DNA 连接酶:T4 DNA连接酶,该酶需要ATP作为辅助因子。T4 DNA连接酶在分子克隆中主要用于:1、连接具有同源互补粘性末端的DNA片段;2、连接双链DNA分子间的平端;3、在双链平端的DNA分子上添加合成的人工接头或适配子。二、粘性末端连接
如果载体和插入片段具有相同的粘性末端,则很容易用DNA连接酶连接成环状的重组DNA分子,但是要注意当载体和插入的两个末端均为同源的粘性末端时,连接后可能出现以下问题:1、载体自身环化,造成假阳性背景克隆,为避免此问题,可在连接前,用碱性磷酸酶将载体DNA 5’- 端去磷酸化,这样只有载体和插入片段之间才能发生连接;2、插入片段可双向插入;3、插入片段可多拷贝插入。当DNA片段两端为非同源的粘性末端时,可实现定向克隆,这时的连接效率非常高,是重组方案中最有效、简捷的途径。三、平端连接平端连接的优点是可用T4连接酶连接任何DNA平端,这对不同DNA分子的连接十分有利。因为除了相同或不同限制酶酶切产生的平末端分子外,含3’-或5’-突出的粘性末端也可以被补齐或削平,实现平端连接。(一)、5’-突出粘性末端的补齐限制酶降解产生的5’-端突出的粘性末端,可用大肠杆菌(Escherichia coli)DNA聚合酶Ⅰ的大片段(klenow片段)补齐。(二)、3’-突出粘性末端的削平含3’- 突出的粘性末端可用T4 DNA聚合酶的3’→5’外切核酸酶活性补平。平端连接的主要问题是,它的连接效率比粘性末端低,因此需较多的T4 DNA连接酶和较高的底物浓度,聚乙二醇(PEG)可促进平端连接反应。四、人工接头连接对平端DNA片段,可借助人工合成的接头来方便连接。所谓接头是人工合成的至少8个核苷酸长的一段迥文序列。接头是平端,在磷酸化后通过T4 DNA连接酶可与大多数平端DNA连接。连接后用相应的限制性内切酶切割,可产生所需要的粘性末端。五、利用适配子连接适配子是人工合成的具有一个以上限制酶识别位点的短序列,它具有一个平端,可与其它DNA的平端连接,同时它还有某种限制酶的突出端,可与含互补的限制酶突出端的DNA片段连接,连接后,用适当的限制酶切割又可产生所需要的突出粘端。第五节重组DNA导入宿主菌体外连接的重组DNA分子必须导入适当的受体细胞中才能大量的复制、增殖和表达。根据所采用的载体的性质,将重组DNA分子导入受体可有不同的方法。一、转化
指以细菌质粒为载体,将外源基因导入受体细胞的过程。转化时,细菌必须经过适当的处理使之处于感受态-即容易接受外源DNA的状态,然后利用短暂热休克使DNA导入细菌宿主中。此外还可用电穿孔法转化细菌,它的优点是操作简便、转化效率高、适用于任何菌株。二、转染和感染利用噬菌体DNA作为载体时可经两种方式导入受体菌。一种是感染,即在体外将噬菌体DNA包装成病毒颗粒,然后使其感染受体菌。另一种方式是转染,即在DNA连接酶作用下使噬菌体DNA环化,再象重组质粒一样地转化进受体菌。但习惯上常把以噬菌体DNA为载体构建成的重组子导入细胞的过程统称为转染。第六节重组克隆的筛选与鉴定基因克隆的最后一步是从转化细菌菌落中筛选出含有阳性重组子的菌落,并鉴定重组子的正确性。通过细菌培养以及重组子的扩增,获得所需的基因片段的大量拷贝。进一步研究该基因的结构、功能,或表达该基因的产物。一、抗药性标志的筛选如果克隆载体带有某种抗药性标志基因如ampr或tetrr ,转化后只有含这种抗药基因的转化子细菌才能在含该抗菌素的平板上幸存并形成菌落,这样就可将转化菌与非转化菌区别开来。如果重组DNA时将外源基因插入标志基因内,该标志基因失活,通过有无抗菌素培养基对比培养,还可区分单纯载体或重组载体(含外源基因)的转化菌落。二、β-半乳糖苷酶系统筛选很多载体都携带一段细菌的lacZ基因,它编码β-半乳糖苷酶N-端的146个氨基酸,称为α-肽,载体转化的宿主细胞为lacZΔ15基因型,它表达β-半乳糖苷酶的C-端肽链,当载体与宿主细胞同时表达两个片段时,宿主细胞才有β-半乳糖苷酶活性,使特异的底物X-gal 变为兰色化合物,这就是所谓的α-互补,而重组子由于基因插入使α-肽基因失活,不能形成α-互补,在含X-gal的平板上,含阳性重组子的细菌为无色菌落或噬菌斑。三、菌落快速裂解鉴定法从平板上直接挑选菌落裂解后,直接电泳检测载体质粒大小,判断有无插入片段存在,该法适于插入片段较大的重组子初筛。四、内切酶图谱鉴定经初筛鉴定有重组子的菌落,小量培养后,再分离出重组质粒或重组噬菌体DNA,用相应的内切酶切割,释放出插入片断;对于可能存在双向插入的重组子,还要用内切酶消化鉴定插入的方向。五、通过聚合酶链反应筛选重组子一些载体的外源DNA插入位点两侧存在特定的序列,如启动子序列等,利用这些特异性序列作为引物,对小量制备的质粒DNA进行聚合酶链反应(PCR)分析,不但可迅速扩增插入片断,判断是否阳性重组子,还可直接对插入进行DNA 序列分析。六、菌落或噬菌斑原位杂交它是先将转化菌落或噬菌斑直接铺在硝酸纤维素膜或琼脂平板上,再转移至另一膜上,然后用标记的特异DNA探针进行分子杂交,挑选阳性菌落。该法能进行大规模操作,一次可筛选多达5x105-5x106个菌落或噬菌斑,特别适于从基因文库中挑选目的基因。回复
基因诊断基因诊断是通过检测基因的存在状态或缺陷对疾病作出诊断的方法。基因诊断的主要技术:1、核酸分子杂交2、聚合酶链反应(PCR)3、基因芯片技术第一节核酸分子杂交技术核酸杂交(Nucleic acid hybridization)是指具有一定同源性的两条单链核酸在一定条件下,按碱基互补的原则重新配对形成双链的过程。 一、核酸杂交的基本原理DNA的变性和复性:在一定的条件(如适当的温度、有机溶剂存在等)下,DNA的双链可解开成为单链,这一过程称为DNA的变性(Denaturatioin)。高温、低盐和有机溶剂促进DNA变性。Tm值是反映DNA的热稳定性的一个参数,称为DNA的熔化温度,系指一半的双链DNA解离成为单链时的温度。DNA的热稳定性或Tm值直接与其碱基组成特别是GC碱基对含量有关,GC碱基对含量越高,Tm值也越高。DNA的杂交即复性(Renaturation)是变性的单链DNA在一定的条件下(低于Tm的温度下)与其互补序列退火形成双链的过程,因此杂交与Tm值相关。影响杂交的主要因素:温度:一般在低于Tm约15至25度的温度下杂交速率最快。盐浓度:钠离子增加杂交分子的稳定性,降低钠离子浓度强烈地影响Tm值和复性速率。但当钠离子浓度超过0.4M时,对复性速度和Tm值影响不大。甲酰胺:有机溶剂如甲酰胺能减少双链核酸的稳定性。每增加1%的甲酰胺,DNA/DNA或DNA/RNA双链的Tm值减少0.72℃。常用50%甲酰胺硫酸葡聚糖:使杂交速率增加,但有时可能增加杂交本底。二、核酸探针的选择和标记核酸探针是指能与待检测的靶核酸序列互补杂交的某种已知核酸片段,它必须具有高度的特异性,并且带有某种适当的标记以便被检测。(一)核酸探针的类型1、克隆的DNA片段,常用cDNA探针。2、RNA探针(Riboprobe)RNA探针的优点是特异性高;杂交效率(灵敏度)更高。适合于Northen杂交、原位杂交等。主要缺点是不稳定,易被降解,另外其制备较困难。3、寡核苷酸探针 可用化学方法人工合成,制备较方便,但灵敏度稍差。4、聚合酶链反应扩增产物 是很好的探针来源,其优点是制备和标记相对容易。(二)核酸标记的类型放射性同位素 目前应用最广,优点是灵敏度高,特别适用于单拷贝基因或低丰度mRNA检测,缺点是易造成放射性污染以及半衰期短,使用不便。核酸探针标记常用的同位素有以下几种:1、32P:其放射性强,自显影时间短,灵敏度较高,缺点是半衰期短(14.3天),放射线散射较严重,因此对分辩率有影响。2、35S :放射性较低,半衰期长(87.1天),灵敏度较高;低散射,因此在用X-光片自显影时分辩率高,特别适用于核酸序列分析和原位杂交等实验。3、33P :是一种较理想的同位素,它的放射性较低,灵敏度高,分辩率好,半衰期也较长(25.4天),适用范围较广。但价格偏高。非同位素标记:常用地高辛或生物素系统。优点:无放射性污染,较稳定;缺点:灵敏度、特异性稍差。(三)核酸探针的标记1、随机引物法(Random priming)随机引物是人工合成的含有各种可能的排列顺序的六核苷酸片段的混合物,因此可以与任何核酸片段杂交,并作为聚合酶反应的引物。标记酶:大肠杆菌(Escherichia coli)DNA聚合酶Ⅰ的大片段-klenow片段。特点:所得探针的放射性比活较高,适用于大多数杂交。2、缺刻平移法(Nick translation0标记酶:大肠杆菌(Escherichia coli)DNaseⅠ(极微量)和DNA聚合酶Ⅰ。用缺刻平移法制备的探针较短,较适合于原位杂交。3、RNA探针的制备和标记RNA探针可用RNA聚合酶体外转录法制备。该方法的合成效率高,所得产物大小均一,有较高的比活,特异适合于Northern杂交和原位杂交。4、聚合酶链反应标记DNA探针利用Taq DNA聚合酶和标记的dNTP,sk 以少量的起始模板合成高比活的c双链或单链DNA探针。5、寡核苷酸探针的标记5’-端标记:T4多核苷酸激酶标记法,一般用于制备DNA序列分析时用的5’-标记的寡苷酸引物。3’-端标记:末端转移酶法,32P-dNTP或ddNTP。6、非同位素核酸探针标记:地高辛或生物素标记的核酸探针的制备方法和同位素探针相似。但是不能用多核苷酸激酶标记法直接对5’-端进行非同位素标记。三、常用核酸杂交技术滤膜杂交固相杂交 核酸杂交 原位杂交液相杂交滤膜杂交是指先将待检测的核酸序列结合到适当的固相支持物如尼龙膜上,然后与存在于溶液中的已标记探针进行杂交的过程。滤膜杂交的基本过程为:1、核酸探针的制备和标记;2、核酸片段的凝胶电泳分离;3、将凝胶中的核酸片段通过印迹(blot)转移到某种固相支持物上;4、用标记的探针与被固定的靶核酸序列杂交(通过还包括预杂交);5、洗膜(除去未杂交的游离探针等);6、检测带标记的杂交分子(放射自显影或酶联反应)。(一)斑点/狭缝印迹(Dot/slot blot)杂交:DNA或RNA样品经变性后直接点样于尼龙膜上,然后进行杂交和检测。其优点是简单、迅速,可同时做多个样品;缺点是特异性不好,有一定比例的假阳性,此外,靶核酸的分子大小难于判断。(二)Southern印迹:指将经过电泳分离的DNA片断转移到一定的固相支持物的过程。Southern印迹杂交的步骤如下:1、用限制性内切酶消化大分子DNA;2、用琼脂糖凝胶电泳对DNAa片段按分子量大小分离;3、将DNA片段在琼脂糖凝胶电泳中变性成单链后,再转移到适当的固相支持物上并与之结合;4、探针与膜上的DNA杂交;5、检测。Southern印迹杂交主要用于基因组结构分析、基因组DNA的定性和定量分析以及利用限制性片段长度多态性进行基因突变分析等。(三)Northern印迹:是指RNA经变性凝胶电泳后,将其转移到固相支持物上,以便用杂交反应检测特定的mRNA分子的含量与大小。是基因表达研究分析的标准方法。Nothern印迹的基本过程包括:1、RNA的提取;2、RNA变性电泳;3、RNA转移和固定;4、杂交;5、检测。除RNA的提取和变性胶电泳与DNA不同外,其余基本与Southern印迹相同,关键是减少实验中的RNA酶污染。(四)核酸杂交在基因诊断中的应用通过核酸杂交技术,可以利用带有某种标记的已知核酸片段作为探针,去检测未知核酸序列。因此,核酸杂交可用于基因鉴定和基因突变分析等领域。1、限制性片段长度多态性(RFLP)分析 多态性(polymorphism)指基因组中特定基因座位(DNA序列)存在两种或两种以上状态(等位基因),并且其中任何一个等位基因在人群中的频率不低于1%。限制性片段长度多态性(RFLP)是由于DNA变异(产生新的酶切位点或消除原有的酶切位点)导致在限制性核酸内切酶酶切时产生不同长度的片段。可借助southern blotting或PCR 的方法进行检测RFLP分析与遗传病基因诊断。人类染色体VNTR序列的RFLP分析图谱:DNA fingerprinting。2、等位基因特异性寡核苷酸(ASO)探针杂交寡核苷酸中的碱基错配会大大影响杂交分子的稳定性,因此可用人工合成的针对正常和突变等位基因的特异性寡核苷酸探针进行杂交,检测点突变。3、基因表达分析 常用Northern blotting或原位杂交分析。第二节聚合酶链反应(PCR)技术一、PCR的基本原理(一)PCR的基本过程PCR是一种体外扩增特异DNA片段的技术。它包括下列三个基本步骤:1、变性(Denaturation):待扩增的DNA模板加热变性成单链;2、退火(Annealing):降低温度,使单链靶序列与寡核苷酸引物退火;3、延伸(Extension):在适当条件下,利用DNA聚合酶使引物延伸,产生新的双链。上述变性、退火、延伸步骤的重复循环,导致特异的靶序列的指数扩增。PCR产物是介于引物的5’端之间的双链DNA片段。(二)PCR体系中的主要成份1、Taq DNA 聚合酶 是一种耐热的DNA聚合酶,具有5’-3’DNA聚合酶活性,一般有5’-3外切酶活性,有或无3’-5’外切酶活性(校对活性),无校对活性的酶在PCR中错掺率较高。PCR中 Taq 酶的用量一般为0.5-2.5U,过多易造成非特异性扩增,过少可能灵敏度不够。2、寡核苷酸引物 是决定PCR扩增特异性的关键。设计PCR引物时的几条原则:①引物长度一般15-30 碱基,过短则特异性低;②避免内部二级结构;③G/C和A/T碱基均匀分布,G/C含量在45%-55% 之间;④两个引物(特别是3’端)间不能发生互补,以免形成引物引物二聚体;⑤引物的3’-端碱基一般应与模板严格配对,并且3’端为G、C或T时引发效率较高;⑥引物的5’-端可添加与模板无关的序列(如限制性内切酶的识别位点、ATG起始密码子或启动子序列等)PCR中所用引物浓度一般在0.1-0.5uM太高的引物浓度易造成非特异性扩增,太低会降低合成效率。3、MgCl2 Mg2+浓度除影响Taq酶活性外,还影响双链DNA的Tm值,因而影响PCR的特异性和扩增效率。PCR中的最适MgCl2浓度一般为1.5-2.5mM(注意游离Mg2+浓度还与能结合Mg2+的化合物如dNTP、EDTA 等的浓度有关。4、脱氧核苷三磷酸(dNTP)一般采用均衡的dNTP浓度,4 种dNTP各为 200umol/L,dNTP可减少游离Mg2+,因此影响聚合酶活性和引物退火。5、模板 单、双链DNA,以及RNA经逆转录合成的cDNA。PCR样品可以是粗制品,但不应含有核酸酶和蛋白酶及其它干扰Taq酶活性的抑制剂 。引物/模板的比率影响PCR的特异性。(三)PCR循环参数1、预变性(Initial denaturation). 模板DNA完全变性对PCR能否成功至关重要,一般95℃加热3-5分钟。2、引物退火(Primer annealing) 退火温度一般需要凭实验(经验)决定。 退火温度对PCR的特异性有较大影响。3、引物延伸 引物延伸一般在72℃进行(Taq酶最适温度)。 延伸时间随扩增片段长短而定。4、循环中的变性步骤 循环中一般95℃,30秒足以使各种靶DNA序列完全变性: 变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败。5、循环数 大多数PCR含25-35循环,过多易产生非特异扩增。6、最后延伸 在最后一个循环后,反应在72℃维持5-15分钟.使引物延伸完全,并使单链产物退火成双链。(四)PCR中的污染和假阳性 PCR中污染主要来自 1、样品间交叉污染; 2、先前PCR产物遗留(carry-over)二、几种常用特殊PCR技术(一)逆转录PCR(Reverse transcription-PCR,RT-PCR) RNA经逆转录后可作为PCR的模板.逆转录PCR(RT-PCR)常用于基因表达研究(定量PCR)和逆病毒检测. 设计RT-PCR引物时,应使引物分别位于不同的外显子中,以便区别cDNA和gDNA扩增产物。(二)多重PCR(Multiple PCR) 在同一PCR反应体系中用多对引物(覆盖不同长度的靶序列)同时扩增。 例如用多重PCR进行DNA缺失筛选(三) 套式PCR(nested PCR) 用第一次PCR扩增区域内部的第二对(套式)引物对第一次PCR产物再次扩增,可以增加特异性和灵敏度。(四)非对称PCR(asymmetric PCR) 在PCR反应体系中,限制引物之一的浓度(50-100:1)进行扩增,可得到单链PCR产物,可用于制备单链测序模板或单链DNA杂交探针。 三、PCR与突变检测 通过PCR扩增片段的多态性分析有助于检测各种突变。 PCR扩增产物的多态性可分为三种类型: 1、限制性片段长度多态性(Restriction fragment length polymorphism-RFLP); 2、序列多态性(Sequence polymorphism); 3、长度多态性(Length polymorphism) (一)PCR-RFLP分析 设计适当的扩增引物,使扩增片段包括某一或数个多态性的限制性内切酶识别序列,在PCR扩增后用该限制酶切割PCR产物,根据电泳后酶切片段长度变化,即可作出诊断,该方法主要用于检测各种已知突变。 (二)PCR结合ASO探针杂交分析 ASO(Allele specific oligonucleotide)探针:等位基因特异性寡核苷酸探针,指针对各种正常和突变靶序列设计的特异性寡核苷酸探针。 1、PCR产物变性后斑点印迹至膜上,用一系列AS0探针杂交,严格控制杂交和洗膜条件、确保正常ASO探针只与正常靶序列条交,而突变ASO只与含相应突变碱基的靶序列杂交。 2、另一种方法是将ASO探针固定在膜上,然后与生物素标记的PCR产物杂交-反向斑点杂交(reverse dot-blot),这样一次杂交可完成多个探针检测。上述方法适用于基因组中某些固定位点上的已知序列差异的检测,如癌细胞中的ras突变,HLA typing等。(三)等位基因特异性扩增(A11eles specific amplification,ASA)-又称扩增阻碍突变系统(Amplification refractory mutation system,ARMS)利用PCR引物的3’端末位碱基必须与其模板DNA互补才能有效扩增的原理,设计等位基因特异性 PCR扩增引物,在严格的条件下,只有在引物3’碱基与模板配对时才能出现PCR扩增带,从而检测出突变,该法省去了探针杂交操作。(四)PCR-SSCP分析单链DNA在中性条件下,由于碱基配对等分子内相互作用而具有复杂的折叠构象,在聚丙烯酰胺凝胶电泳中,其迁移率除与长度有关外,还与其构象有关。DNA的突变造成DNA片段中碱基序列不同,变性为单链后在中性聚丙烯酰胺凝胶中的构象不同—单链构象多态性(Single strand conformation polymorphism,SSCP),利用迁移率的差别可使各种序列不同的单链得以分离。PCR一SSCP的步骤:PCR扩增→产物热变性成单链→非变性PAGE→显示(放射自显影或银染等)PCR-SSCP是检测点突变的简便灵敏方法,已用于多种遗传病、肿瘤中原癌基因和抑癌基因的突变分析,对<200bp片段其灵敏度较好,靶序列增长时其灵敏度下降(一般175-345nt)。(五)扩增片段长度多态性(Amp-FLP)VNTR、STR等重复序列,因重复单位数目的不同而呈现高度多态。因此利用重复序列两侧的特异性引物进行PCR扩增,所得扩增片段具有高度多态性,这些不同长度的等位片段可用PAGE分离。(六)PCR直接测序DNA序列分析是检测基因突变最直接最可信的方法,它不仅可确定突变的部位,还可确定突变的性质。PCR直接测序是指对PCR产物直接进行序列分析,而不是先将DNA待测片段克隆于测序载体上,这可大大的简化操作步骤。PCR产物测序常采用循环测序法(cycle sequencing):在PCR反应体系中同时将ddNTP加入,并利用同位素或荧光素标记的引物引导扩增,使模板的扩增与测序同时进行。应用PCR测序有以下优点:模板需要量小;方法简便,易自动化;测序效率高。四、PCR在基因诊断中的应用(一)遗传病的基因诊断目前已有近百种遗传病可用PCR技术进行诊断和产前诊断。用PCR对遗传病进行诊断的前提是对致病基因的结构必须部分或全部清楚。.如利用PCR-RFLP或Amp-FLP对遗传病家系进行连锁分析,进而作出基因诊断。(二)传染病诊断PCR已应用于多种病原体的特异性检测和鉴定1、病毒:如HBV,HCV,HIV,HPV等。2、致病菌:如淋球菌、结核杆菌、军团菌、幽门螺杆菌、肺炎支原体等;(三)肿瘤基因诊断1、原癌基因和抑癌基因突变,如ras,p53;癌基因扩增和表达分析。2、利用微卫星不稳定性,直接诊断肿瘤,如膀胱癌等;3、分析白血病(如CML)中异常染色体易位,检测微小残留病变(Minimal residual disease,MDR)4、肿瘤多药耐药性(multi-drug resistance,MDR)检测5、端粒酶活性检测第三节 基因芯片技术基因芯片(Gene chip/DNA chip)又称为DNA微矩阵(DNA Microarray),是包被在固相载体上的高密度DNA的微阵列。一、基因芯片的类型:1、寡核苷酸芯片:采用固相原位合成技术制备的,或用传统方法合成后再固定于芯片上的寡核苷酸探针阵列(Genechip, Affymatrix,Inc)。2、DNA微矩阵(DNA Microarray):将DNA探针通过自动化点样技术固定于特定的固相支持物如玻璃表面,然后再与靶序列杂交。二、基因芯片技术的原理DNA芯片技术是将许多特定的寡核苷酸片段或基因片段有规律地排列固定于支持物(如膜、硅片或玻璃片)上,然后通过类似核酸杂交的的方法与待测的标记样品按碱基配对原则进行杂交,再通过检测系统对其进行扫描,并用相应软件对信号进行比较和检测,得到所需的生物信息(bioinformation)。其特点是可进行基因的高通量、大规模、平行化、集约化的信息处理和功能研究。用DNA微矩阵进行基因表达分析的步骤1、分离(待比较的)不同组织或细胞的mRNA,逆转录法制备带不同荧光标记的cDNA探针;2、混合探针,并与microarray杂交,洗涤除去未结合探针。3、用特有波长的激光扫描芯片,并用共聚焦显微镜检测各探针的荧光,各element的相对荧光强度反映特异mRNA的相对丰度。三、基因芯片技术的应用1、疾病诊断(遗传病、肿瘤和病原体诊断)2、新药筛选和毒理学研究3、突变/多态性检测单核苷酸的多态性( single nucleotide polymorphism, SNP)。4、基因表达分析5、发现新基因四、表达谱基因芯片的特点及其应用利用基因芯片可进行高通量基因表达平行分析,是基因功能研究的重要手段。对来源于不同个体(正常人与患者)、不同组织、不同细胞周期、不同发育和分化阶段、不同病变、不同刺激(包括不同诱导、不同治疗阶段)下的细胞内的mRNA或逆转录后产生的cDNA与表达谱基因芯片进行杂交,可以对这些基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或几个基因与疾病联系起来,极大地加快这些基因功能的确立,同时进一步研究基因与基因间相互作用的关系。采用表达谱基因芯片研究基因表达与传统的Northern Blot相比有许多重要的优点:1、检测系统的微型化,对样品等需要量非常小 2、同时研究上万个基因的表达变化,研究效率明显提高 3、能更多地揭示基因之间表达变化的相互关系,从而研究基因与基因之间内在的作用关系 4、检测基因表达变化的灵敏度高,可检测丰度相差几个数量级的表达情况 5、节约费用和时间 Further Readings1.Ekins R. and Chu F.W. Microarrays: their origins and applications. Trends in Biotechnolology, 7-218. 2.Sinclair, B. Everything"s Great When It Sits on a Chip - A bright future for DNA arrays, The Scientist, 1999 May 24, 13(11), 18-20. 3.Nature Genetics published a special issue (January 1999 Supplement), The Chipping Forecast. It"s a collection of more than 10 reviews (60 pages) on different aspects of microarray analysis. All the reviews are freely available online. 4.Schena, M., Heller, R.A., Theriault, T.P., Konrad, K., Lachenmeier, E., and Davis, R.W. Microarrays: biotechnology"s discovery platform for functional genomics. Trends in Biotechnology 1-306. 5.Service, R.F. Microchip arrays put DNA on the spot. Science 88), 396-399. 6.Ramsay, G. DNA chips - states-of-the-art. Nature Biotechnology ), 40-44. 7.Marshall, A.; Hodgson, J. DNA chips - an array of possibilities. Nature Biotechnology ), 27-31.回复要是每本教科书都这样简单就好了回复的确是该好好复习呢回复其实我们身边很多的硕士博士对这些基础的东西掌握的都不劳。回复编码序列就是外显子吗?那么如何解释许多基因的第二个外显子才出现翻译起始密码子?回复谢谢,言简意赅,扫盲正好回复太好了,适合我回复谢谢!回复复习中,不明白当年是咋把分子生物学啊,基础生化啊过了的回复非常好,感谢做了如此详细的归纳。
相关热词:
生物秀是目前国内最具影响力的生物医药门户网站之一,致力于IT技术和BT的跨界融合以及生物医药领域前沿技术和成功商业模式的传播。为生物医药领域研究人员和企业提供最具价值的行业资讯、专业技术、学术交流平台、会议会展、电子商务和求职招聘等一站式服务。
官方微信号:shengwuxiu
电话:021-

我要回帖

更多关于 临床药物基因组学 的文章

 

随机推荐